
Digital Object Identifier (DOI) 10.1140/epjc/s2005-02352-4
Eur. Phys. J. C 44, 131–137 (2005) THE EUROPEAN

PHYSICAL JOURNAL C

Dirac particle in the presence of a plane wave
and constant magnetic fields: path integral approach
S. Bourouainea

Physics Department, Faculty of Sciences, Mentouri University, Constantine, Algeria

Received: 22 January 2005 / Revised version: 16 May 2005 /
Published online: 9 August 2005 – c© Springer-Verlag / Società Italiana di Fisica 2005

Abstract. The Green function (GF) related to the problem of a Dirac particle interacting with a plane
wave and constant magnetic fields is calculated in the framework of a path integral via the Alexandrou et
al. formalism according to the so-called global projection. As a calculation tool, we introduce two identities
(constraints) into this formalism; their main role is the reduction of the dimension of the integral and the
emergence in a natural way of some classical paths and, due to the existence of a constant electromagnetic
field, we have used the technique of fluctuations. Hence the calculation of the GF is reduced to a known
Gaussian integral plus a contribution from the effective classical action.

1 Introduction

The propagator of a Dirac particle in an external electro-
magnetic field is distinguished from that of the scalar par-
ticle by a complicated spin structure. By using the known
anticommuting odd Grassmann variables [1], the descrip-
tion of the Dirac propagator gains the possibility of ac-
quiring a representation—a path integral—similar to the
case of the scalar particle modified by a spin factor (SF).
This representation has been discussed in various contexts.
Nevertheless, the description of the Dirac propagator by
only bosonic variables is still unfulfilled. Berezin and Mari-
nov [2] showed thatmassive particles can be described in the
usual five-dimensional extension. This idea was exploited in
several works, among them let us quote the successful for-
malism of Fradkin–Gitman [3−−4] in the relativistic case,
in which we note an important supersymmetry between
the bosonic and fermionic parts [5]. This formalism saw
several applications while following various computational
methods [6–10]. Recently, a generalization of Di Vecchia
and Ravndal’s approach [12–13] describing a massive Dirac
particle in external vector and scalar fields, and using path-
integral representations according to the global and local
projections, has been proposed by Alexandrou et al. [14].
This formulation is still endowed with a supersymmetric
action which is derived systematically without inserting
a fifth component ψ5(τ) to the spin variable as opposed
to [3].

The purpose of this paper is to develop the problem
of a relativistic particle with mass m in a plane wave and
constant magnetic fields, and show the attractive features
of spin evolution in the computation of the SF by using
the formalism of Alexandrou et al. in its global projec-
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tion (without considering the Grassmann proper time) [14].
Note that this problem has been calculated in the frame-
work of Feynman’s approach based on the T-product [15],
which is not strictly a genuine path-integral formulation.

In the first step, by taking into account the definition of
the total potential vector that characterizes our problem,
we give the general formulation of Alexandrou et al. In
the third section, we compute the Green function (GF)
by adopting the fluctuation analysis performed on both,
real and Grassmann variables [9] and inserting the known
identities [7] into this formulation.

Let us recall initially that theGFSg (xb, xa) givenby the
formalism of Alexandrou et al. in the global projection [14]
is

Sg (xb, xa) =
(
iγµ (∂b − gAb)µ +m

)
Gg (xb, xa) (1)

with

Gg (xb, xa) =
−i
2k0

exp
(
iγµ ∂

∂Γµ

)∫ ∞

0
dT

∫
DxDp

×
∫

E

D̃ψ exp

{
i

∫ T

0

[
− k0

2
ẋ2 − gẋ.A(x)

+
1

2k0

(
p2 −m2)− i

g

k0
Fµνψ

µψν

+iψ.ψ̇
]
dτ + ψ(0).ψ(T )

}∣∣∣∣∣
Γ=0,

(2)

where g is the electron charge and γ are the Dirac matrices.
x, k0 and Γ , ψ are, respectively, the real and Grassmann
(odd) variables. The scalar product of four-vectors, denot-
ing by a dot, is a.b = aµbµ.
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The boundary conditions for bosonic variables x are

x(0) = xa, x(T ) = xb (3)

and the antiperiodic boundary for the spin variables are

E = ψµ(T ) + ψµ(0) = Γµ (4)

and we have the proper normalization

D̃ψ = Dψ

[∫
E

Dψ exp{ψ(0).ψ(T ) −
∫ T

0
ψ.ψ̇dτ}

]−1

(5)

The effective action relative to (2) shows us the contri-
butions of the spin degrees of freedom to the kinetic energy,
as well as the contribution of coupling of the photon to the
electron and its spin evolution.

2 Formulation of the problem

We propose a short review of the notations and conventions
used in the definition of the electromagnetic field. The
total potential vector Aµ(x) related to the plane wave and
constant magnetic fields is the sum of two terms

Aµ(x) = aµ

(
xT
)

+Ap
µ(ϕ), (6)

where aµ

(
xT
)

generates the constant magnetic fieldB and
is a function of the transverse component of the position
vector x

aµ

(
xT
)

=
1
2
fxT =

1
2
fµν

(
xT
)ν
, (7)

with
fµν = iB

(
εµε

∗
ν − ενε

∗
µ

)
. (8)

(ε, ε∗) are the basis vectors set, such as

ε =
1√
2

(1, i, 0, 0) , ε∗ =
1√
2

(1,−i, 0, 0) (9)

satisfying

ε.ε = ε∗.ε∗ = 0 and ε.ε∗ = 1, (10)

in which, we can define the transverse components for any
vector as (

xT
)
µ

= εµ (ε∗.x) + ε∗µ (ε.x) . (11)

Ap
µ(ϕ) is the transverse potential vector of plane wave,

which depends on ϕ = k.x.
Note that the wave vector k only has a longitudinal com-

ponent
k = (0, 0,−1,−1) , (12)

which implies that k.ε = k.ε∗ = 0, with

k.Ap(ϕ) = 0 and k2 = 0. (13)

From (6), we get the total electromagnetic tensor

Fµν(ϕ) = fµν + fp
µν(ϕ)

= iB
(
εµε

∗
ν − ενε

∗
µ

)
+kµA

′p
ν (ϕ) − kνA

′p
µ (ϕ), (14)

where the prime indicates a derivative with respect to ϕ.
By changing the time integration variable τ → τ

k0e0

and T = k0e0, the action in (2) becomes that given by the
Fradkin–Gitman formalism (in the limit χ0 (Grassmann
proper time) → 0) with a different sign in the SF and the
absence of the fifth Grassmann component, hence

Gg (xb, xa) =
−i
2

exp
(
iγµ ∂

∂Γµ

)∫ ∞

0
de0

∫
DxDp

∫
E

D̃ψ

× exp

{
i

∫ 1

0

[
−

.
x

2

2e0
− gẋ.A(x)

+
e0
2
(
p2 −m2)− ie0gFµνψ

µψν

+iψ.ψ̇

]
dτ + ψ(0).ψ(1)

}∣∣∣∣∣
Γ=0

(15)

where e0 is a real variable.
Since the plane-wave field is a function of the product

k.x, it is preferable to introduce the two following func-
tional identities [7]∫

dϕbdϕaδ (ϕa − k.xa)
∫
DϕDpϕ

× exp
[
i

∫ 1

0
pϕ

( .
ϕ− k.ẋ

)
dτ

]
= 1 (16)

and∫
dηbdηadpσ

∫
DηDpη

× exp
{
i

∫ 1

0
pη

(
η̇ − k.ψ̇

)
dτ + ipσ (ηa − k.ψa)

}
= 1

(17)

into expression (15). Because of these identities, the vari-
ables ϕ and η are independent of the scalar products k.x
and k.ψ, respectively.

The term describing the interaction between the spin
and a plane wave can be written as

fp
µν(ϕ)ψµψν =

[
kµA

′p
ν (ϕ) − kνA

′p
µ (ϕ)

]
ψµψν

= 2η (A′p.ψ) , (18)

in this case, we get

Gg(xb, xa)

=
−i
2

exp
(
iγµ ∂

∂Γµ

)∫ ∞

0
de0

∫
DxDp

∫
E

D̃ψ

∫
Dη

×
∫
Dpη

∫
dηbdηadpσ

∫
dϕbdϕa

∫
Dpϕδ(ϕa − k.xa)
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× exp
{
i

∫ 1

0

[
− ẋ2

2e0
− gẋ.A(x) +

e0
2
(
p2 −m2)

+ pϕ (ϕ̇− k.ẋ) − ie0gFµνψ
µψν + iψ.ψ̇

− 2ie0gηA′p.ψ + pη

(
η̇ − k.ψ̇

)]
dτ

+ ψ(0).ψ(1) + pσ(ηa − k.ψa)
}∣∣∣∣

Γ=0
, (19)

where pσ is a odd Grassmann variable. (ηb, ϕb, ψn
b ) and (ηa,

ϕa, ψn
a ) are respectively the variables (η(τ), ϕ(τ), ψn(τ))

at τ = 1 and τ = 0.

3 Green function calculation

The genuine path-integral formulation (19) contains all the
dynamics of a Dirac particle moving in the combined field
of a plane wave and a constant magnetic field. By con-
sidering the classical trajectories, the computation of the
GF is reduced to the computation of the known Gaussian
integrals and a contribution of the effective classical action.

Let us use the transverse and longitudinal components
of the vectors (x, p, ψ) as

x =
(
xT

xL

)
, p =

(
pT

pL

)
and ψ =

(
ψT

ψL

)
. (20)

Therefore, from the definitions (8), (11) and (20), we get
the following scalar products

fµνψ
µψν ≡ ψT .

(
fψT

)
, A′p.ψ ≡ A′p.ψT and k.ψ ≡ k.ψL.

(21)
In order to linearize the quadratic bosonic term along the
longitudinal plane in the integral action of (19), and make
the vector pL constant during time, we apply the shift

pL → pL +
ẋL

e0
+ e0kpϕ. (22)

In other words, after considering the transverse and
longitudinal components given by (20) and the shifting
term (22), the successive integrations over

(
pL, xL

)
and

(pϕ, ϕ) then over pT in (19), lead us to

Gg(xb, xa)

=
−i
2

exp
(
iγµ ∂

∂Γµ

)∫ ∞

0
de0

∫
dpL

(2π)2

∫
DηDpη

×
∫

E

D̃ψ

∫
dpσdηbdηadϕbdϕaδ

(
ϕb − ϕa + e0k.p

L
)

×
∫ xT

b

xT
a

DxT δ(ϕa − k.xa)

× exp
[
ipL.

(
xL

b − xL
a

)
+
ie0
2
(
pL2 −m2)]

× exp

{
i

×
∫ 1

0

[
−
(
ẋT
)2

2e0
− g

2
xT.f ẋT − gAp.ẋT − ie0gψ

T.fψT

+ iψ.ψ̇ − 2ie0gηA′p.ψT + pη

(
η̇ − k.ψ̇L

)]
dτ

+ ψ(0).ψ(1) + pσ

(
ηa − k.ψL

a

)}∣∣∣∣∣
Γ=0

(23)

and the extracted scalar path ϕ̇ = −e0k.pL with the evo-
lution

ϕ(τ) = −e0k.pLτ + ϕa. (24)

Notice that the expression (23) is obtained after per-
forming the following transformation on the vector pT

pT → pT +
ẋT

e0
+ gA(x). (25)

The part which depends on vectors
(
pL, xL

b , x
L
a

)
in (23)

corresponds to the free scalar propagator.
Now, we calculate the path integral with respect to the

transverse vector xT and ψ(τ). The presence of a constant
electromagnetic field causes a particular quadraticity in the
action of (23), hence it is preferable to perform a fluctuation
analysis on the real transverse bosonic vector xT and on
the fermionic vector ψµ to extract the contribution of the
fixed action (classical action) in the propagator. Thus,

xT = XT + Y T (26)

xT
b,a = XT

a,b + Y T
a,b (27)

and
ψµ(τ) = ψµ

c (τ) + ζµ(τ), (28)

where XT and ζµ(τ) are, respectively, the real and odd
Grassmann fluctuations analysis. ψµ

c (τ) is fixed by the
Euler–Lagrange equations (see Appendix A) and the cyclic
boundary conditions on the fluctuations ζµ(τ) are chosen as

E0 = ζµ(1) + ζµ(0) = 0, (29)

and the cyclic boundary condition of classical paths is

ψµ
c (1) + ψµ

c (0) = Γµ. (30)

Let us consider all contributions given by (24) and (26)–
(30) for the evaluation of Gg(xb, xa): they become

Gg(xb, xa)

=
−i
2

exp
(
iγµ ∂

∂Γµ

)∫ ∞

0
de0

∫
dpL

(2π)2

∫
dϕbdϕadηbdηa

×
∫
DηDpη

∫
E0

D̃ζT D̃ζL

∫
dpσ

×
∫ Yb

Ya

DXT δ
(
ϕb − ϕa + e0k.p

L
)
δ(ϕa − k.xa)
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× exp

 ipL.
(
xL

b − xL
a

)
+
ie0
2
(
pL2 −m2)

+ i

∫ 1

0

−
(
ẊT
)2

2e0
− g

2
XT .fẊT

 dτ
− i

g

2

∫ ϕb

ϕa

dϕAp(ϕ)
dY T

dϕ
+XT .fY T

∣∣∣∣ϕ
b

ϕa

+ i

∫ 1

0

[
−ie0gηA′pψT

c + pη η̇ − ie0gζ
T .fζT

+ iζL.ζ̇L + iζT .ζ̇T
]
dτ (31)

+ ψc(0).ψc(1) + pσ

(
ηa − k

(
ψL

ca + ζL(0)
))

∣∣∣∣∣∣∣
Γ=0

,

by fixing the path Y T as(
− Ẏ T

e0
+ gfY T − gAp(ϕ)

)
= 0, (32)

and using∫
E

D̃ψ =
∫

E0

D̃ζ and
∫ xT

b

xT
a

DxT =
∫ Xb

Xa

DXT .

(33)
The term that is a function of the real fluctuations XT

appearing in the action of expression (31) is equivalent
to a known Gaussian integral related to the problem of
scalar particle (without SF) in a constant electromagnetic
field [10]. In fact, by using the explicit definition of the
electromagnetic tensor (8), we can show that this Gaussian
takes a particular form in terms of the uniform constant
magnetic field B and the components of XT

a ,XT
b (see

Appendix B), where the components of XT
a ,XT

b in the
transverse plane are defined as

XT
a =

(
X1

a

X2
a

)
, XT

b =
(
X1

b

X2
b

)
. (34)

The GF should be in a symmetrical form with respect
to the initial and final points to extract the wavefunctions.
Therefore we symmetrize the delta function δ(ϕb − ϕa +
e0k.p

L) by inserting its exponential form

δ
(
ϕb − ϕa + e0k.p

L
)

=
∫
dz exp

[
iz
(
ϕb − ϕa + e0k.p

L
)]

(35)

into (31) and shifting the vector pL to pL − zk. After
integrating again over z, we find

Gg(xb, xa)

=
−i
2

exp
(
iγµ ∂

∂Γµ

)∫ ∞

0
de0

∫
E0

D̃ζT D̃ζLDpη

∫
Dη

×
∫

dpL

(2π)2

∫
dϕbdϕadηbdηa

∫
dpσ

 igB

4π sin
(

e0gB
2

)


× δ(ϕa − k.xa)δ(ϕb − k.xb)

× exp

{
ipL.

(
xL

b − xL
a

)
+
ie0
2
(
pL2 −m2)

− i
g

2

∫ ϕb

ϕa

dϕAp(ϕ)
dY T

dϕ
+XT .fY T

∣∣∣∣ϕ
b

ϕa

}

× exp
{
i
gB

2

[(
X1

bX
2
a −X2

bX
1
a

)− 1
2

cot
(
e0gB

2

)
×
((
X1

b −X1
a

)2
+
(
X2

b −X2
a

)2)]

+ i

∫ 1

0

[
−ie0gηA′pψT

c + pη η̇ − ie0gζ
T .fζT

+ iζL.ζ̇L + iζT .ζ̇T
]
dτ

+ ψc(0).ψc(1) + ipσ

(
ηa − k.ψL

ca

)
− ipσk.ζ

L(0)
}∣∣∣∣

Γ=0
. (36)

Notice that the part which does not contain the inte-
gration over Grassmann paths in (36) describes the GF of a
scalar particle in both a plane wave and constant magnetic
fields [14].

The only remaining path integral in (36), is the SF.With
the help of the velocity variables ωµ(τ) [8], we compute
the Gaussian integrals with respect to the ζT and ζL (see
Appendix B). After integrating successively over pη and η
in (36), we deduce that the spin current projected along the
wave vector k is constant during the evolution and satisfies
the equation

η̇ = 0, η = ηa = ηb. (37)

Taking into account the classical equations in appendix
A, we deduce that

k.ψ̇L
c = 0, k.ψL

c (1) = k.ψL
c (0). (38)

The multiplication by the wave vector k on the left of the
boundary condition (30), and the successive integrations
over pσ and ηa in (36), lead to

ηa = k.ψL
c (0) =

k.ΓL

2
. (39)

This equation preserves the induced condition by the pro-
jection of (4) along k.

It has been shown that all path integrals are reduced
to the computed Gaussian integrals. What remains is the
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contribution of the effective classical action in the calcu-
lation of the GF. By substituting all obtained solutions in
Appendix A into (39), and differentiating with respect to
Γ , we find

Gg(xb, xa)

=
−i
2

∫ ∞

0
de0

∫
dpL

(2π)2

∫
dϕbdϕa

 igB

4π sin
(

e0gB
2

)


× δ(ϕa − k.xa)δ(ϕb − k.xb)

× exp
{
ipL.

(
xL

b − xL
a

)
+
ie0
2
(
pL2 −m2)

− i
g

2

(∫ ϕb

ϕa

dϕAp(ϕ)
dY T

dϕ
+XT .fY T |ϕb

ϕa

)

+ i
gB

2

[(
X1

bX
2
a −X2

bX
1
a

)
− 1

2
cot
(
e0gB

2

)((
X1

b −X1
a

)2
+
(
X2

b −X2
a

)2)]}
×
{

e(
ie0g

2 B) [1 − γµγνkµε
∗
νK(ϕb)]

γµγνεµε
∗
ν

2

× [1 + γµγνkµενK
∗(ϕa)]

+ e−( ie0g
2 B) [1 − γµγνkµενK

∗(ϕb)]
γµγνε∗µεν

2

× [1 + γµγνkµε
∗
νK(ϕa)]

}
(40)

with

K(ϕ) =
g

2 (k.pL)
exp
[
igBϕ

(k.pL)

]
×
∫ ϕ

ϕ0

dϕ′ exp
[
igBϕ′

(k.pL)

]
(ε.A′p) . (41)

Here we have used the formulas

1 − 1
2

tanh
(α

2

)
γµγν

(
εµε

∗
ν − ε∗µεν

)
(42)

=
(

e− α
2

e− α
2 + e

α
2

)
γµγνεµε

∗
ν +
(

e
α
2

e− α
2 + e

α
2

)
γµγνε∗µεν ,

and

γµγν

(
εµε

∗
ν

2
+
ε∗µεν

2

)
= 1. (43)

K∗(ϕ) is the conjugate of K(ϕ). The final expression
of Gg (xb, xa) is quite symmetric and is identical to that
obtained in [15].

It has been shown in [8] that the exact SF of a Dirac
particle interacting with a plane wave field can only be
described through the classical Grassmann paths due to
the remarkable properties of the field, and therefore, there
is no contribution from the fluctuating trajectories. Sim-
ilarly, in our case, by either considering a weak magnetic

field (B � 1) or neglecting the fluctuations around the
classical paths in the second-order variation (ζµζν ≈ 0) as
a semiclassical calculation of the SF, we find the Gaussian
integral given in (B.3) is unity. However, the description of
the spin interaction is only presented by using the classical
Grassmann trajectories without performing any integra-
tion. In other words, the existence of a constant magnetic
field B requires an introduction of fluctuating paths which
contribute as Gaussian integral to the exact computation
of the SF.

By taking the limiting case of the wave vector k → 0 in
(40), we can deduce the influence of the constant magnetic
field B on the particle. We then get

Gg(xb, xa)

=
−i
2

∫ ∞

0
de0

∫
dpL

(2π)2

 igB

4π sin
(

e0gB
2

)


× exp
{
ipL.

(
xL

b − xL
a

)
+
ie0
2
(
pL2 −m2)

+ i
gB

2

[(
X1

bX
2
a −X2

bX
1
a

)
− 1

2
cot
(
e0gB

2

)((
X1

b −X1
a

)2
+
(
X2

b −X2
a

)2)]}
×
{

e(
ie0g

2 B) γ
µγνεµε

∗
ν

2
+ e−( ie0g

2 B) γ
µγνε∗µεν

2

}
(44)

4 Conclusion

We have calculated the exact Green function (GF) for a
Dirac particle interacting with a plane wave and constant
transverse magnetic fields via the formalism of Alexandrou
et al. (global projection). In this approach, the description
of spin is established through the integration over anticom-
mutingGrassmann trajectories. In addition, the calculation
of the GF is based on two techniques, in the first one, we
have introduced the so-called constraints (functional iden-
tities) into the formulation. These identities reduce the
dimension of the integration of all projected paths along
the wave vector, and extract some classical trajectories in a
natural way from the propagator. Indeed, it is shown that
this method is very useful for the path-integral approach,
particularly in the presence of the plane-wave field.

Due to the existence of a constant magnetic field B,
we have adopted a second technique which is based on
a fluctuation analysis performed on real and Grassmann
variables. In fact, the paths are written in terms of both
fixed and fluctuating trajectories; as a consequence, the
path integral is reduced to a calculation of known Gaussian
integrals, and by inserting the classical solutions of Euler–
Lagrange into the effective classical action, we obtain the
exact result of the GF, as provided in the literature.
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Appendix A: Classical solutions

ψµ
c (τ) is fixed by the Euler–Lagrange equations as

ψ̇T
c − e0gfψ

T
c = −e0gηA′p, (A.1)

ψ̇L
c (τ) = − i

2
kṗη. (A.2)

The classical solutions of ψT
c (τ) from the Euler–La-

grange equations are

ψT
c (τ) = −e0gηaeQτ

∫ τ

0

(
e−Qτ́A′p) dτ́ + eQτψT

c (0) (A.3)

with
Qµν = e0gfµν . (A.4)

We can obtain the initial and final classical solutions
ψT

c (0) and ψT
c (1) of the spin variables from the boundary

condition (30) and the general solution (A.3)

ψT
c (0) = e0gηaeQ

(
1 + eQ

)−1
∫ 1

0

(
e−Qτ́A′p) dτ́

+
1
2

(
1 − tanh

Q

2

)
ΓT , (A.5)

ψT
c (1) = −e0gηaeQ

(
1 + eQ

)−1
∫ 1

0

(
e−Qτ́A′p) dτ́

+ eQ
(
1 + eQ

)−1
ΓT . (A.6)

In the same way as for the transverse classical solution,
we have

ψL
c (τ) = − i

2
kpη +

i

2
kpηa

+ ψL
c (0) (A.7)

and

ψL
c (1) =

i

4
k (pηa − pηb

) +
ΓL

2
, (A.8)

ψL
c (0) = − i

4
k (pηa − pηb

) +
ΓL

2
. (A.9)

Appendix B: Gaussian integrals

TheknownGaussian integral that appears in the problemof
scalar particle (without SF) in a constant electromagnetic
field [10] is

∫
DXT exp

i∫ 1

0

−
(
ẊT
)2

2e0
− g

2
XT .fẊT

 dτ


=

igB

4π sin
(

e0gB
2

)
× exp

{
i
gB

2

[(
X1

bX
2
a −X2

bX
1
a

)
(B.1)

− 1
2

cot
( e0g

2
B
)((

X1
b −X1

a

)2
+
(
X2

b −X2
a

)2)]
.

With the help of velocity variables ωµ(τ) [8], such that

ωµ(τ) = ζ̇µ(τ),

ζµ(τ) =
1
2

∫ 1

0
ε (τ − s)ωµ(s)ds, (B.2)

ε(τ) = sign of τ,

the integral of the SF along ζT reduces to a simple Gaussian
that appears in the treatment of Dirac particle in a constant
electromagnetic field∫

E0

D̃ζT exp
{
i

∫ 1

0

[
−ie0gζT .fζT + iζT .ζ̇T

]
dτ

}
=
[
det
(
cosh

( e0g
2
f
))]1/2

= cosh
(
ie0gB

2

)
. (B.3)

Thus the integral according to the longitudinal compo-
nents is∫

E0

D̃ζL exp
{
i

∫ 1

0

(
iζL.ζ̇L − pσkζ

L(0)
)}

= 1, (B.4)

since it is of the type∫
D̃ωL exp

[∫ (
ωL(τ)ε (τ − s)ωL(s) + IωL(s)

)
dτds

]
= 1, (B.5)

with
Iµ =

1
2
kµpσ, (B.6)

where Iµ does not depend on the time of evolution
and I2 = 0.
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